Eva Susanne Schmidt, Annette Schier and Hubert Schmidbaur*

Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received 27th November 2000, Accepted 30th January 2001 First published as an Advance Article on the web 9th February 2001

Reduction of cis-ethene-1,2-di(tert-butylamido)-gallium(III) chloride with metallic potassium in the presence of N,N,N',N'-tetramethylethylenediamine gives the title compound which has a novel dimeric structure with the potassium cations η^5 -coordinated to the pseudocarbene ring system of one monomer and η^1 -bonded to the gallium atom of the other.

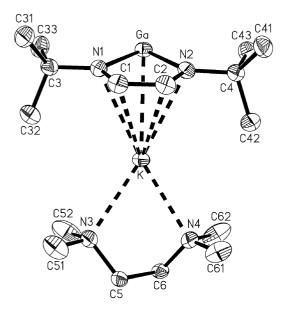
Diazabutadiene derivatives of low-valent carbon ("Arduengo carbenes", \mathbf{A} , E=C)¹ are a well-established class of heterocycles which show great potential as synthons and as ligands in synthetic and coordination chemistry.² The corresponding silylene³ and germylene⁴ heterocycles (\mathbf{A} , E=Si, Ge) have also been described and were shown to have similar characteristics of structure and bonding. Arduengo carbenes are the monomeric units of Wanzlick's fulvalene-type compounds (\mathbf{B} , E=C),⁵ and in fact these dimers and monomers may be interconverted. Monomer–dimer equilibria are also known for certain silylenes and germylenes (\mathbf{B} , E=Si, Ge) and in particular for the related stannylenes and plumbylenes (\mathbf{A}/\mathbf{B} , E=Sn,

Pb), but the nature of the E=E double bond is a subject of controversy owing to significant deviation of the ligand atoms from the molecular plane.⁶

In recent work we were able to show that analogous anionic systems with low-valent gallium (\mathbf{C} , $\mathbf{E} = \mathbf{Ga}$) can also be obtained, which are isoelectronic to compounds of type \mathbf{A} ($\mathbf{E} = \mathbf{Ge}$, $\mathbf{R} = {}^t\mathbf{Bu}$). None of the corresponding discrete boron or aluminium heterocycles are known. With the counter ion \mathbf{K}^+ completely protected by an 18-crown-6 ligand and two tetrahydrofuran solvent molecules, the anion is an independent monomeric unit in the crystal lattice with a completely planar skeleton including the central carbon atoms of the *tert*-butyl groups.

We now describe the result of an attempt to induce dimerization of the anions (to give \mathbf{D}) by partially stripping the potassium cations of their ligand coating. The exposure of cationic charge to the anions may give "Coulomb assistance" to the

DOI: 10.1039/b101016f


mutual approach of two negatively charged gallium atoms (E) as observed previously with anionic compounds of low-coordinate gallium, the Ga–Ga bond order of which is highly controversial.⁸

The reaction of 1,4-dilithio-1,4-di-*tert*-butyl-1,4-diazabutene (1, R = 'Bu), obtained from the reaction of diazabutene and lithium metal in tetrahydrofuran, with equimolar quantities of anhydrous gallium trichloride in hexane at 0 °C is known to afford the unsymmetrical dinuclear complex 2,7 [('BuNCH)₂]₂- Ga_2Cl_2 , the structure of which has been determined.9 Reduction of this compound at a potassium mirror on the walls of a glass reaction vessel at 20 °C in two steps, after 10 d leads first to the Ga–Ga bonded gallium(II) compound 3, ¹⁰ which after addition of N,N,N',N'-tetramethylethylenediamine (TMEDA, instead of the crown ether used previously), and another 4 d reaction time, is finally converted into a new gallium(I) compound 4 (lemon-yellow crystals from THF–TMEDA, 18% yield, Scheme 1). The product is soluble in tetrahydro-

furan, and the ¹H and ¹³C-{¹H} NMR spectra of the solutions show the resonances of symmetrically bound TMEDA and ('BuNCH)₂ ligands in a 1:1 ratio. The elemental analysis is also in agreement with the composition KGa(TMEDA)-('Bu₂N₂C₂H₂).†

Crystals of compound 4 are triclinic, space group $P\overline{1}$, with Z=2 monomeric units in the unit cell.‡ These monomers have no crystallographically imposed symmetry but obey quite closely the requirements of a mirror plane passing through the

J. Chem. Soc., Dalton Trans., 2001, 505-507

Fig. 1 Monomeric unit of compound **4** with atomic numbering. (ORTEP, ¹⁴ 50% probability ellipsoids, hydrogen atoms omitted for clarity). Selected bond lengths (Å) and angles (°) Ga–N(1) 1.9834(16), Ga–N(2) 1.9844(17), Ga–K 3.4681(5), K–C(1) 3.002(2), K–C(2) 2.996(2), K–N(3) 2.899(2), K–N(4) 2.8788(19), C(1)–C(2) 1.349(3), N(1)–C(1) 1.389(3), N(2)–C(2) 1.388(3); N(1)–Ga–N(2) 82.05(7).

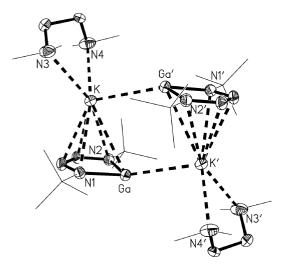


Fig. 2 The dimer 4 with $Ga \cdots K$ contacts between the monomeric units. (TMEDA methyl groups and *tert*-butyl groups are only indicated by thin lines; ORTEP for all other atoms.)

two metal atoms and through the middle of the C1–C2 and C5–C6 bonds (Fig. 1). The pseudo-carbene heterocycle is planar including the central carbon atoms of the 'Bu groups. The dimensions of the five-membered ring are identical to those found for the anions in the [(18-crown-6)(THF)₂]potassium salt.⁷ However, in contrast to the isolated nature of the anions in the reference compound, the potassium atoms in **4** are η⁵-bonded to the heterocycle and chelated only by a TMEDA molecule. The K–Ga distance is 3.468(1) Å and the K–C and K–N distances are in the range 2.879(2)–3.113(2) Å.

The resulting monomeric molecular units are further aggregated into centrosymmetrical dimers not through Ga–Ga* bonding as proposed in $\bf D$ or $\bf E$, but through Ga \cdots K* contacts with a distance [3.438(1) Å], even shorter than the intramolecular η^5 contact Ga–K (Fig. 2). The line connecting the Ga and K* atoms forms an angle of only 20.8° with the C_2N_2Ga ring plane, indicating that the lone pair of electrons at the gallium atom is oriented towards the potassium cation.

It should be noted that the structure of 4 can be constructed by shifting the two C_2N_2Ga rings which are coplanar in model **D** to two parallel planes with a distance of 4.0 Å and allowing

the potassium atoms (with their TMEDA ligands) to move from the positions above and below the middle of the Ga–Ga bond to their new η^5 positions above and below the rings retaining the inversion symmetry. Quantum-chemical calculations with simplified ligands have shown that models E and 4 are both stable structures with a rather small difference in the total energy favouring model 4, mainly owing to the negative charge of the heterocyclopentadienyl ring. 11

The nucleophilic properties of anions of type **C** with their lone pair of electrons at Ga(I) are readily demonstrated in the reactions of the (18-crown-6)(THF)₂ analogue⁷ with methyl triflate, which give good yields of the corresponding dimeric gallium(III) compound [('BuNCH)₂GaMe]₂ and potassium triflate.§

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie and Deutscher Akademischer Austauschdienst.

Notes and references

† All experiments were carried out in a dry-box filled with ultrapure argon. A solution of (Li'BuNCH), in tetrahydrofuran (15 mL) was prepared from diazabutadiene (1.68 g, 10 mmol) and lithium metal (0.139 g, 20 mmol) and reacted with a solution of anhydrous GaCl₃ (1.760 g, 10 mmol) in hexane (15 mL) at 0 °C. On warming the reaction mixture to 20 °C the colour of the solution turned from red via brown to green and a yellow precipitate was formed. The mixture was filtered and the filtrate transferred to a reaction vessel in which metallic potassium (0.39 g, 10 mmol) was deposited as a mirror at the inner walls through distillation in a vacuum at 500 °C. After 10 d of efficient stirring the potassium was consumed. The mixture was again filtered and transferred into another flask covered with the same amount (0.39 g) of fresh potassium mirror at -78 °C, loaded with TMEDA (1.162 g, 10 mmol) and stirred for another 4 d at 20 °C. A yellow precipitate was formed which was separated by filtration and recrystallized from TMEDA-THF [v/v 1:1] (0.7 g, 18% yield). NMR (THF-d₈, 20 °C), 1 H (399.8 MHz): δ 1.40 (s, 18H, Me₃C), 2.15 (s, 12H, Me₂N); 2.29 (s, 4H, CH₂), 6.31 (s, 2H, CH); ¹³C-{¹H} (100.5 MHz): δ 33.84 (s, CMe₃), 45.13 (s, Me₂N), 53.34 (s, CH₂), 57.81 (s, CMe₃), 115.5 (s, CH). Anal. calc. (found) for C₁₆H₃₆GaN₄: C, 48.80 (49.92); H, 9.22 (9.79); N, 14.20 (13.99%).

‡ The crystalline sample of **4** was placed in inert oil, mounted on a glass pin, and transferred to the cold gas stream of the diffractometer. Crystal data were collected and integrated using a Nonius DIP2020 system with monochromated Mo-K α (λ = 0.71073 Å) radiation at -130 °C. The structure was solved by direct methods using SHELXS-97¹² and refined by full matrix least-squares calculations on F^2 using SHELXL-97. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model with fixed isotropic contributions [$U_{\rm iso}(\hat{n}_{\rm x}) = 1.5 \times U_{\rm eq}$ of the attached C]. The disorder of the two central carbon atoms C5 and C6 of the TMEDA could be resolved using split positions with equal populations.

Crystal data for $C_{32}H_{72}Ga_2K_2N_8$. M=786.62, triclinic, a=10.3925(2), b=10.7648(2), c=10.9534(2) Å, a=101.728(1), $\beta=92.051(1)$, $\gamma=114.450(1)^{\circ}$, space group $P\bar{1}$, Z=1, U=1082.28(4) Å, $\mu(Mo-K\alpha)=14.66$ cm⁻¹, 4132 measured and unique reflections wR2=0.0740, R=0.0309 for 3906 reflections $[I\geq 2\sigma(I)]$ and 217 parameters. CCDC reference number 154913. See http://www.rsc.org/suppdata/dt/b1/b101016f/ for crystallographic data in CIF or other electronic format.

§ A solution of (18-crown-6)(THF)₂potassium [*cis*-ethene-1,2-di-(*tert*-butylamido)]gallate(1)⁷ (0.2 g, 0.3 mmol) in THF was cooled to -78 °C and treated with methyl triflate (0,049 g, 0.3 mmol). The mixture was warmed to 20 °C and stirred for another 20 h. After the solvent was removed in a vacuum the residue was extracted with hexane. A colourless oily liquid remained after evaporation of the solvent. NMR (C_6D_6 , 20 °C), 1 H: δ -0.58 (br s, 6H, GaMe), 1.11 (s, 18H, Me₃C), 1.22 (s, 18H, Me₃C), 4.93 (m, 2H, CH), 6.45 (m, 2H, CH). MS (CI): m/z 504 {[('BuNCH)₂]₂Ga₂Me₂}⁺, 252 {('BuNCH)₂GaMe}⁺, 237 {('BuNCH)₂-GaB-1)⁺}

- 1 A. J. Arduengo III, R. L. Harlow and M. Kline, *J. Am. Chem. Soc.*, 1991, **113**, 361.
- 2 W. A. Herrmann and C. Köcher, *Angew. Chem.*, *Int. Ed. Engl.*, 1997, **36**, 2163.

506

- 3 (a) M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner and N. Metzler, J. Am. Chem. Soc., 1994, 116, 2691; (b) B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Chem. Soc., Chem. Commun., 1995, 1931.
- 4 W. A. Herrmann, M. Denk, J. Behm, W. Scherer, F. R. Klingan, H. Bock, B. Solouki and M. Wagner, *Angew. Chem.*, *Int. Ed. Engl.*, 1992 31 485
- (a) H.-W. Wanzlick and E. Schikora, *Angew. Chem.*, 1960, 72, 494;
 (b) H.-W. Wanzlick and H.-J. Kleiner, *Angew. Chem.*, 1961, 73, 493.
- 6 M. Weidenbruch, Eur. J. Inorg. Chem., 1999, 373.
- 7 E. S. Schmidt, A. Jockisch and H. Schmidbaur, J. Am. Chem. Soc., 1999, 121, 9758. A neutral gallium(i) heterocycle was recently also prepared: N. J. Hardman, B. E. Eichler and P. P. Power, Chem. Commun., 2000, 1991.
- 8 (a) J. Su, X. W. Li, R. C. Crittendon and G. H. Robinson, J. Am.

- Chem. Soc., 1997, 119, 5471; (b) B. Twamley and P. P. Power, Angew. Chem., Int. Ed., 2000, 112, 3643; (c) A. J. Downs, Coord. Chem. Rev., 1999, 189, 59; (d) G. Linti and H. Schnöckel, Coord. Chem. Rev., 2000, 206–207, 285.
- 9 E. S. Schmidt, A. Jockisch and H. Schmidbaur, *J. Chem. Soc.*, *Dalton Trans.*, 2000, 1039.
- 10 D. S. Brown, A. Decken and A. H. Cowley, J. Am. Chem. Soc., 1995, 117, 5421.
- 11 E. S. Schmidt, P. Pyykkö and H. Schmidbaur, unpublished work, 2000
- 12 G. M. Sheldrick, SHELXS-97, Program for crystal structure solution, University of Göttingen, 1997.
- 13 G. M. Sheldrick, SHELXL-97, Program for structure refinement, University of Göttingen, 1997.
- 14 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.